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In the last half dozen years there have been published some interesting
results concerning approximation by rational functions of a complex variable,
especially convergence and degree of convergence when the poles of the
approximating functions are prescribed indirectly if at all-prescribed, for
instance, by extremal properties of the approximating functions. We shall
examine a number of such situations, including some results due to D. J.
Newman, Turan, Gon~ar, Montessus de Ballore, and Walsh. Approximation
by polynomials is useful by way of comparison, but the resources of rational
functions are much greater, and the corresponding theory much richer.

I. For approximation by polynomials, we have

THEOREM 1. Let E be a closed bounded point set whose complement K is
connected, and regular in the sense that Green's function G(z) for K with pole
at infinity exists. Let ER denote generically the interior of the locus
CR : G(z) = log R(>O) in K. Ifj(z) is analytic throughout Ep , but throughout
no ER with R > p, then there exist polynomials piz) in z ofrespective degrees
n such that

lim sup[max I j(z) - piz)l, z on Ep/n = lip;
n ....OO

(1)

there exist no such polynomials that theftrst member of(1) is less than lip. The
polynomials Pn(z) converge to j(z) uniformly throughout each ER , R < p.

A corresponding theorem for approximation by rational functions is much
more recent. A rational function of the form

a_'7n + a zn-l + ..,+ ar (z) ="... 1 n
nv - boZv + bizv-I + ... + bv ' I bozv+ ... + bv I ~ 0,
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is said to be of type (n, v). The well-known Pade table corresponding to a
functionj(z), analytic at the origin, consists of the rational functions rnvCz) of
respective types (n, v), each of highest order contact withj(z) at z = 0:

rOO(z), rlO(z), r20(z), .

r01(z), rll(z), r2l(z), .

r02(z), r12(z), r22(z), .

An analog is the table of rational functions Rnv(z) of respective types (n, v),
each of best approximation to a given function on a given closed bounded
set E:

Roo(z), R lO(z), R20(z), .

ROl(z), Rll(z), R2l(Z), ..

R02(z), R12(Z), R22(Z), .

An analog of Theorem I is, then, [Walsh, 8]:

THEOREM 2. With the notation of Theorem I for E, K, ER , and CR , let
F(z) be analytic on E, meromorphic with precisely v poles in Ep , and let Rnv(z)
be the rationalfunctions of types (n, v) ofbest approximation to F(z) on E. Then
we have for each v

lim sup[max IF(z) - Rnv(z)l, z on E]l/n = lip.
n->""

(2)

The functions Rnv(z) converge to F(z) uniformly throughout each ER with
R < p, except in the neighborhoods of the poles ofF(z) in Ep •

There is obviously an intimate relation between Theorems I and 2. Let
F(z) be as in Theorem 2, and let the poles of F(z) in Ep be al , a2 ,... , av , with
7T(Z) - (z - al) ... (z - a,). We apply Theorem I to the function j(z) =
F(z) 7T(Z), which satisfies the conditions of Theorem I; so there exist poly
nomials in z of respective degrees n satisfying (I). However, 7T(Z) is analytic on
E, whence

lim sup[max I F(z) - Pn(z)/7T(z)l, z on Ep/n ~ lip.
n->""

(3)

The rational functions Pn(Z)j7T(Z) are of type (n, v), hence can be used for
comparison as to degree of convergence with the rational functions of best
approximation, and (3) implies that the first member of (2) is not greater
than Ijp. Use of a generalized form of S. Bernstein's lemma [Walsh, 10]
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enables one to complete the proof of Theorem 2; there is a one-to-one cor
respondence between the finite poles of Rnv(z) and those of F(z) in Ep; the
former approach the latter. Theorem 2 is, of course, related to the Pade
table; each sequence RnvCz) is analogous to a row of the Pade table.

Theorem 2 can frequently be applied a number of times with reference to
a point set E and a given meromorphic functionf(z) by use of various values
of v. For instance, if E is the line segment [2,3], and F(z) is F(z), Co may be
chosen successively for v = 0, 1,2,... so as to be the ellipse whose foci are
z = 2 and z = 3, passing, respectively, through the poles z = 0, -1, -2,...
of F(z). The corresponding values of pare 5 + 2'61 / 2, 7 + 4'31 / 2, 9 + 4'51/ 2,

etc. The actual values of Rnv(z) have been computed numerically by Dr.
J. R. Rice, and they verify quite exactly the law (2).

Two other theorems are interesting in comparison with each other, and
with Theorems 1 and 2:

THEOREM 3. Let D be a region bounded by an analytic Jordan curve C,
and let the function fez) be analytic in D, continuous in D U C. Let fez) be of
class L(p, ex) on C, namely such that j<p)(z) exists on C and satisfies there a
Lipschitz condition of order 0:, 0 < ex < 1. Then there exist polynomials Pn(z)
of respective degrees n such that on D U C

I fez) - Pn(z)1 ~ A/nP+"", (4)

where the constant A does not depend on n or z. Conversely, iff(z) is given and
polynomials Pn(z) exist such that (4) is satisfied, with 0 < ex < 1, then
fez) E L(p, 0:) on C.

The two parts of Theorem 3 are due to J. H. Curtiss and to Sewell and
Walsh, respectively. An analogue of Theorem 3 for rational functions has
recently been proved by E. B. Saff [6] in his Ph.D. thesis (1968) at the Univer
sity of Maryland:

THEOREM 4. Let D be as in Theorem 3, and let F(z) be now meromorphic
with precisely v poles in D, continuous on C. Then ifF(z) is of class L(p, ex) on
C, there exist rational functions Rnv(z) of respective types (n, v) such that
(0 < ex < 1)

z on C. (5)

Conversely, ifF(z) is given to be continuous on C, meromorphic with precisely
v poles in D, and if rational functions RnvCz) of respective types (n, v) exist,
satisfying (5), then F(z) is of class L(p, ex) on C.

The first part of Theorem 4 follows from Theorem 3, by precisely the
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method used in proving the first part of Theorem 2. If the poles of F(z) in D
lie in (Xl , (X2 , ... , (Xv , we set

Then fez) is analytic in D, continuous, and of class L(p, (X) on C, so by
Theorem 3 there exist polynomials Pn(z) such that (4) is satisfied;

IF(z) 7T(Z) - Pn(z) I :(: Ajnp +a, z on C.

Then (5) follows at once, with Rnv(z) == Pn(Z)j7T(Z) and perhaps with a
modification in the constant A.

The second part of Theorem 4, like that of Theorem 2, follows by setting
up (for n sufficiently large) a one-to-one correspondence between the v poles
of Rnlz) and the v poles of F(z), for the former approach, respectively, the
latter. However, the corresponding method and result are by no means
obvious if F(z) and Rnv(z) have each an infinite number of poles on the point
sets involved. Here lies a largely open problem, namely to extend Theorems 2
and 4 to the case that F(z) has an infinite number of poles in E. and in D,
respectively.

A somewhat simplified form of this problem is as follows, analogous to
Theorem 2. Let F(z) be meromorphic in the entire plane, with a pole (Xl near
the point set E. Let a second pole (X2 lie so far from E and (Xl that the pole of
the function Rll(z) [or Rnl(z)] of best approximation to F(z) on E is "near"
the point (Xl , and let a third pole (Xa lie so far from E, (Xl , and (X2 that the two
poles of the function R22(Z) [or Rn2(z)] of best approximation to F(z) on E
are "near" the points (Xl and (X2 , and so on. Then it is to be conjectured that

lim sup[max IF(z) - Rnn(z)l, z on E]1/n = 0,
n-+oo

and that the Rnn(z) converge to F(z) on each compact set containing no poles
of F(z). However, even this mild conjecture has not yet been accurately
formulated and proved.

II. We turn now to another kind of result, contrasting approximation
by rational functions with approximation by polynomials. Dunham Jackson
showed in work now classical that the best polynomial approximation to the
function I x I on [-1, 1] is of the order Ijn, in the sense that for each n there
exists a polynomial Pn (x) of degree n such that

x on [-1, 1], (6)
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but (S. Bernstein) there exists no sequence of polynomials Pn(x) of respective
degrees n such that for some ex, 1 < ex, we have

xon[-l,l].

However, for approximation by rational functions Rn(x) of respective
degrees n, D. J. Newman [5] has shown the surprising result that there exist
Rn(x) with (n > 4)

x on [-1, 1], (7)

but there exist no such rational functions such that

xon[-l,l]. (8)

His method is based on explicit formulas involving the exponential function,
and it has been extended and sharpened to include approximation of various
other given functions by rational functions.

After Newman, Sziisz and Turan [7] investigated approximation to
functions with convex higher derivatives satisfying a Lipschitz condition,
and also to piecewise analytic functions. They also established the order
[f(x) - rn(x) [ ~ r evn for rational approximation. G. Freud [2] found for
rational approximation to Lipschitz functions of order ex (0 < ex < 1) a
degree of approximation O(n-1 log2 n), better than that for polynomials. A. A.
Gon9ar [3] used methods of conformal mapping, and other methods going
back to Zolotareff (1877) to study approximation to piecewise analytic
functions, and also [4] used the modulus of continuity w(8) on [0, 1] and
analyticity in the region [z - 1 I < 1 to obtain rational functions ap
proaching the given f(x) with an order w(exp (-cnl/2», on the interval
[0, 1], an improvement over Jackson.

The results already obtained are highly surprising, but require considerable
further investigation before a complete analog of the Jackson-Bernstein
theory is developed, both on an interval of the real axis and on an arbitrary
Jordan arc. The essence of the problem is: Where should the poles of the
approximating rational functions be placed for maximum degree of con
vergence?

As Newman states, there is a widespread folk theorem to the effect that:
"In some overall sense, rational approximation is essentially no better than
polynomial approximation". I have sharpened [12] this naive rough observa
tion by proving through use of approximation by bounded analytic functions:

If the function f(z) is approximable on a Jordan arc C of the z-plane, to the
order n-"(ex > 0) by rational functions Qn(z) of respective degrees n whose
poles have no limit point on C, thenf(z) is also approximable on C to the order
n-O: by polynomials Pn(z) ofrespective degrees n.
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In Newman's case, this theorem applies to every subinterval of [-1, 1]
which contains the origin, so the origin is a limit point of poles of Newman's
rational functions, and indeed of poles of any set of rational functions of
respective degrees n that improves (6) to n~.

HI. In a physical problem, under suitable circumstances an unknown
function may frequently be related to a continued fraction, a differential
equation, a power series, or some other algorithm leading to a sequence of
rational functions. Again the question arises, where are the poles of the ap
proximating rational functions, say the Pade approximants of a continued
fraction? As an example, Theorem 2 is analogous to an older theorem on the
Pade table due to Montessus de Ballore. A fairly large body of literature has
now grown up around this general topic, largely due to physicists, and with a
large number of conclusions based on admittedly unusual hypotheses. As an
illustration, we mention one of the newer theorems [Walsh, 11]:

THEOREM 5. Let the function f(z) be analytic at the origin and On
r: I Z I = p(> 0), meromorphic with precisely v poles in Ll : 1Z I < p, and
suppose the Pade approximants Pnn(z) are bounded on r:

I f(z) - Pnn(Z) [ ~ M, Z on r. (9)

Suppose Pnn(z) has precisely NnPoles in Ll, with Nn/n --)- O. Then we have

lim sup[max I f(z) - Pnn(z)l, z on T]l/n ~ [max 1z I, Z on T]2/p2, (10)
n->oo

where T is an arbitrary closed set in Ll containing no limit points ofpoles of
Pnn(z).

The weakness of this theorem is that it may be difficult to verify that Ll
contains precisely N n poles of Pnn(z) with Nn/n --)- 0, and that T contains no
limit point of poles of Pnn(z).

Baker [1] has recently published a report on this area of research. He
himself has a sequence of theorems and corollaries which he calls quasi
theorems and quasicorollaries. These are based on a conjecture which is
unproved but to which there are no known counterexamples:

Conjecture (Baker). If P(z) is a power series representing a functionf(z)
which is analytic for I Z I ~ I except for m poles within this circle and except
for z = +1, at which point f(z) is assumed continuous when only points
1 Z I ~ 1 are considered, then at least a subsequence of the [N, N] Pade
approximants converges uniformly to f(z) in the region formed from I z I < 1
by removing small open disks with centers at these poles.

Based on this conjecture, Baker proves various quasitheorems and quasi-
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corollaries. By "convergence" of a sequence he means that at least a sub
sequence converges. Proof or disproof of the Conjecture is a prominent open
question.

In this complex of problems relating to Pade approximants, an interesting
result [Walsh, 9] is that ifj(z) is analytic in the neighborhood of the origin, the
Pade approximant of type (n, v) is the limit of the rational function of type
(n, v) of best approximation to j(z) on the point set I z I ~ € as € approaches
zero. Thus the relation between the theory of Pade approximation and that
of best approximation is far closer than that of mere analogy. The question
for both theories still exists: Where are the poles of the approximating
functions?
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