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In the last half dozen years there have been published some interesting
results concerning approximation by rational functions of a complex variable,
especially convergence and degree of convergence when the poles of the
approximating functions are prescribed indirectly if at all—prescribed, for
instance, by extremal properties of the approximating functions. We shall
examine a number of such situations, including some results due to D. J.
Newman, Turdn, Gongar, Montessus de Ballore, and Walsh. Approximation
by polynomials is useful by way of comparison, but the resources of rational
functions are much greater, and the corresponding theory much richer.

I. For approximation by polynomials, we have

THEOREM 1. Let E be a closed bounded point set whose complement K is
connected, and regular in the sense that Green’s function G(z) for K with pole
at infinity exists. Let Egy denote generically the interior of the locus
Cr : G(2) = log R(>0) in K. If f(2) is analytic throughout E, , but throughout
no Eg with R > p, then there exist polynomials p,(z) in z of respective degrees
n such that

lim sup[max | /(z) — pu(2)}, z on EJ/* = 1/p; M

there exist no such polynomials that the first member of (1) is less than 1/p. The
polynomials p,(z) converge to f(z) uniformly throughout each Ex , R < p.

A corresponding theorem for approximation by rational functions is much
more recent. A rational function of the form

aozn + alzn—l + + a,
b(}ZV + blzv—l + .en _,__ bv 4
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is said to be of type (n, v). The well-known Padé table corresponding to a
function f(z), analytic at the origin, consists of the rational functions r,(z) of
respective types (n, ), each of highest order contact with f(z) at z = 0:

roo(2)s F10(2), T20(2)s-.
roa(2), ra(2), ra(2),...

rOZ(Z)a rlZ(Z)a rzg(Z),...

An analog is the table of rational functions R,,(z) of respective types (n, v),
each of best approximation to a given function on a given closed bounded
set L

Ro(2), Rio(2), Roo(2),...
ROI(Z)’ Ry(2), Ry (2),...
Roz(z), R12(Z), R22(Z),...

An analog of Theorem 1 is, then, [Walsh, 8]:

THEOREM 2. With the notation of Theorem 1 for E, K, Eg , and Cy, let
F(2) be analytic on E, meromorphic with precisely v poles in E, , and let R, (2)
be the rational functions of types (n, v) of best approximation to F(z) on E. Then
we have for each v

ling_)goup[max | F(z) — R,.(2)|, z on E]V/" = 1/p. )

The functions R,(z) converge to F(z) uniformly throughout each E, with
R < p, except in the neighborhoods of the poles of F(z) in E, .

There is obviously an intimate relation between Theorems 1 and 2. Let
F(z) be as in Theorem 2, and let the poles of F(z) in E, be o , ay ..., &, , with
7(z) = (z — oy) "' (2 — o). We apply Theorem 1 to the function f(z) =
F(z) 7(z), which satisfies the conditions of Theorem 1; so there exist poly-
nomials in z of respective degrees # satisfying (1). However, #(z) is analytic on
E, whence

lingjoup[max | F(z) — p(2)/m(2)|, z on EP/* < 1/p. 3)

The rational functions p,(z)/m(z) are of type (n, v), hence can be used for
comparison as to degree of convergence with the rational functions of best
approximation, and (3) implies that the first member of (2) is not greater
than 1/p. Use of a generalized form of S. Bernstein’s lemma [Walsh, 10]



238 WALSH

enables one to complete the proof of Theorem 2; there is a one-to-one cor-
respondence between the finite poles of R, (z) and those of F(z) in Ep; the
former approach the latter. Theorem 2 is, of course, related to the Padé
table; each sequence R,,(z) is analogous to a row of the Padé table.

Theorem 2 can frequently be applied a number of times with reference to
a point set E and a given meromorphic function f(z) by use of various values
of v. For instance, if E is the line segment [2, 3], and F(z) is I'(z), C, may be
chosen successively for v = 0, 1, 2,... so as to be the ellipse whose foci are
z == 2 and z = 3, passing, respectively, through the poles z = 0, —1, —2,...
of I'(z). The corresponding values of p are 5 + 2-61/2, 7 - 4-31/2, 9 4 4-51/2
etc. The actual values of R,(z) have been computed numerically by Dr.
J. R. Rice, and they verify quite exactly the law (2).

Two other theorems are interesting in comparison with each other, and
with Theorems 1 and 2:

THEOREM 3. Let D be a region bounded by an analytic Jordan curve C,
and let the function f(z) be analytic in D, continuous in D U C. Let f(z) be of
class L(p, o) on C, namely such that f'?)(z) exists on C and satisfies there a
Lipschitz condition of order o, 0 << o« << 1. Then there exist polynomials p,(z)
of respective degrees n such that on D U C

|f(Z) - Pn(z)| < A/np-m’ (4)

where the constant A does not depend on n or z. Conversely, if f(2) is given and
polynomials p,(z) exist such that (4) is satisfied, with 0 < o < 1, then

f@eL(p, o) on C.

The two parts of Theorem 3 are due to J. H. Curtiss and to Sewell and
Walsh, respectively. An analogue of Theorem 3 for rational functions has
recently been proved by E. B. Saff [6] in his Ph.D. thesis (1968) at the Univer-
sity of Maryland:

THEOREM 4. Let D be as in Theorem 3, and let F(z) be now meromorphic
with precisely v poles in D, continuous on C. Then if F(z) is of class L(p, ) on
C, there exist rational functions R, (z) of respective types (n,v) such that
O<a<l)

| F(z) — R, (z)| < A[n?*e, zon C. (5)

Conversely, if F(z) is given to be continuous on C, meromorphic with precisely
v poles in D, and if rational functions R,(z) of respective types (n, v) exist,
satisfying (5), then F(z) is of class L(p, «) on C.

The first part of Theorem 4 follows from Theorem 3, by precisely the
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method used in proving the first part of Theorem 2. If the poles of F(z) in D
lie in o , g ..., , , WE SEL

) = (2 — o)z —w), f(2)=F2)n()

Then f(z) is analytic in D, continuous, and of class L(p, «) on C, so by
Theorem 3 there exist polynomials p,(z) such that (4) is satisfied;

| F(2) m(2) — pa(2)] < A/nr*e, zon C.

Then (5) follows at once, with R,.(z) = p,(z)/=(z) and perhaps with a
modification in the constant A4.

The second part of Theorem 4, like that of Theorem 2, follows by setting
up (for n sufficiently large) a one-to-one correspondence between the v poles
of R,,(z) and the v poles of F(z), for the former approach, respectively, the
latter. However, the corresponding method and result are by no means
obvious if F(z) and R,,(z) have each an infinite number of poles on the point
sets involved. Here lies a largely open problem, namely to extend Theorems 2
and 4 to the case that F(z) has an infinite number of poles in E, and in D,
respectively.

A somewhat simplified form of this problem is as follows, analogous to
Theorem 2. Let F(z) be meromorphic in the entire plane, with a pole «, near
the point set E. Let a second pole a, lie so far from E and «, that the pole of
the function Ry(z) [or R,,(z)] of best approximation to F(z) on E is “near”
the point «, , and let a third pole ;4 lie so far from E, «, , and «, that the two
poles of the function Ry(z) [or R,.(z)] of best approximation to F(z) on E
are “‘near” the points o; and «, , and so on. Then it is to be conjectured that

liqtliup[max | F(z2) — R,,(2)|, zon EP/» = 0,

and that the R,,(z) converge to F(z) on each compact set containing no poles
of F(z). However, even this mild conjecture has not yet been accurately
formulated and proved.

II. We turn now to another kind of result, contrasting approximation
by rational functions with approximation by polynomials. Dunham Jackson
showed in work now classical that the best polynomial approximation to the
function | x | on [—1, 1] is of the order 1/n, in the sense that for each n there
exists a polynomial P, (x) of degree r such that

x| —Px)| < Cfn, xon[—11], ©6)
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but (S. Bernstein) there exists no sequence of polynomials P,(x) of respective
degrees # such that for some a, 1 < a, we have

[ 1x ] — Pu(x)| < Gy/n*,  xon[~—1,1]

However, for approximation by rational functions R,(x) of respective
degrees n, D. J. Newman [5] has shown the surprising result that there exist
R, (x) with (n > 4)

Il x| — Ru(x)| < 3e~Vn, xon[—1, 1], (7)
but there exist no such rational functions such that
| x| — Rx)] < e*¥72,  xon[—1,1] ®)

His method is based on explicit formulas involving the exponential function,
and it has been extended and sharpened to include approximation of various
other given functions by rational functions.

After Newman, Sziisz and Turdn [7] investigated approximation to
functions with convex higher derivatives satisfying a Lipschitz condition,
and also to piecewise analytic functions. They also established the order
| f(x) — ra(x)| < e—°v* for rational approximation. G. Freud [2] found for
rational approximation to Lipschitz functions of order « (0 <a <1) a
degree of approximation O(n~! log? n), better than that for polynomials. A. A.
Gongar [3] used methods of conformal mapping, and other methods going
back to Zolotareff (1877) to study approximation to piecewise analytic
functions, and also [4] used the modulus of continuity w(8) on [0, 1] and
analyticity in the region |z — 1| <1 to obtain rational functions ap-
proaching the given f(x) with an order w(exp (—cn'/?)), on the interval
[0, 1}, an improvement over Jackson.

The results already obtained are highly surprising, but require considerable
further investigation before a complete analog of the Jackson—Bernstein
theory is developed, both on an interval of the real axis and on an arbitrary
Jordan arc. The essence of the problem is: Where should the poles of the
approximating rational functions be placed for maximum degree of con-
vergence ?

As Newman states, there is a widespread folk theorem to the effect that:
“In some overall sense, rational approximation is essentially no better than
polynomial approximation”. I have sharpened [12] this naive rough observa-
tion by proving through use of approximation by bounded analytic functions:

If the function f(2) is approximable on a Jordan arc C of the z-plane, to the
order n=*(« > 0) by rational functions Q,(2) of respective degrees n whose
poles have no limit point on C, then f(z) is also approximable on C to the order
n~* by polynomials p,(z) of respective degrees n.
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In Newman’s case, this theorem applies to every subinterval of [—1, 1]
which contains the origin, so the origin is a limit point of poles of Newman’s
rational functions, and indeed of poles of any set of rational functions of
respective degrees n that improves (6) to »*.

III. In a physical problem, under suitable circumstances an unknown
function may frequently be related to a continued fraction, a differential
equation, a power series, or some other algorithm leading to a sequence of
rational functions. Again the question arises, where are the poles of the ap-
proximating rational functions, say the Padé approximants of a continued
fraction? As an example, Theorem 2 is analogous to an older theorem on the
Padé¢ table due to Montessus de Ballore. A fairly large body of literature has
now grown up around this general topic, largely due to physicists, and with a
large number of conclusions based on admittedly unusual hypotheses. As an
illustration, we mention one of the newer theorems [Walsh, 11]:

THEOREM 5. Let the function f(z) be analytic at the origin and on
I':|z| = p(>0), meromorphic with precisely v poles in 4 : |z | < p, and
suppose the Padé approximants P, ,(z) are bounded on I

1f(2) — Puu2)l < M, zonl. )

Suppose P, (z) has precisely N,, poles in A, with N,/n — 0. Then we have
lim suplmax | £(2) — Pan(2)], z on TP" < [max | z |, z on TF/p?, (10)

where T is an arbitrary closed set in 4 containing no limit points of poles of
P’n’n(Z)'

The weakness of this theorem is that it may be difficult to verify that 4
contains precisely N, poles of P, ,(z) with N,/n — 0, and that T contains no
limit point of poles of P,,(z).

Baker [1] has recently published a report on this area of research. He
himself has a sequence of theorems and corollaries which he calls quasi-
theorems and quasicorollaries. These are based on a conjecture which is
unproved but to which there are no known counterexamples:

Conjecture (Baker). If P(z) is a power series representing a function f(z)
which is analytic for | z | << 1 except for m poles within this circle and except
for z = 41, at which point f(z) is assumed continuous when only points
| z| < 1 are considered, then at least a subsequence of the [N, N] Padé
approximants converges uniformly to f(z) in the region formed from | z | << 1
by removing small open disks with centers at these poles.

Based on this conjecture, Baker proves various quasitheorems and quasi-
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corollaries. By ‘“‘convergence” of a sequence he means that at least a sub-
sequence converges. Proof or disproof of the Conjecture is a prominent open
question.

In this complex of problems relating to Padé approximants, an interesting
result [Walsh, 9] is that i/ f(z) is analytic in the neighborhood of the origin, the
Padé approximant of type (n, v) is the limit of the rational function of type
(n, v) of best approximation to f(z) on the point set | z | < € as e approaches
zero. Thus the relation between the theory of Padé approximation and that
of best approximation is far closer than that of mere analogy. The question
for both theories still exists: Where are the poles of the approximating
functions ?
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